Perpendicular Point

Natural Hazard Desktop Assessment Version 2

24 March 2025

ACG Properties Limited

Sheet 1: Executive summary and applicability

Table of Contents	
Description	Sheet No.
Executive summary and applicability	Sheet 1
Geotechnical constraints	Sheet 2 to 4
Geotechnical considerations	Sheet 5 to 7
Geomorphic mapping	Sheet 8
Falling debris hazard	Sheet 9 to 12
Coastal erosion hazard	Sheet 13 to 14
Gully hazards	Sheet 15 to 16
Undermined cliff hazard	Sheet 17 to 18
Qualitative risk matrix and risk level implications	Sheet 19
Qualitative measures of likelihood and consequence	Sheet 20

Background

We understand that you plan to develop the property 4663 State Highway 6, Te Miko, Punakaiki (Valuation Ref: 18860/28400). The site is located on a west-facing, gently to moderately sloping hillside perched above near-vertical sandstone cliffs. The hillside has been incised by several 3 – 10 m deep channel features which connect to the coast. We understand at this stage the proposed development currently includes 15 lightweight cabins, a lodge, a main access track, and access tracks to each of the cabins.

Scope of work

This report provides preliminary guidance on the critical geotechnical and natural hazard constraints likely to have an impact on the master planning and options assessment. This assessment includes the following:

- Review of readily available information, including topographic data from 2022 LiDAR survey and 2024 UAV survey, historic aerial imagery, published geological / council maps, and our knowledge from nearby sites that T+T has worked on.
- Site mapping of the natural hazards within the site constraints, including any geological exposures.
- This report, which includes an annotated natural hazards constraint map, concept-level geotechnical implications table, and recommendations for master planning.
- A follow-up videoconference to discuss the outcomes of our report.

Executive Summary

This geotechnical and natural hazards desktop assessment has been prepared to provide concept level geotechnical considerations and recommendations to support master planning of the proposed development at Perpendicular Point, north of Punakaiki.

Our initial desktop assessment (v1) identified four key hazard areas across the site, including:

- Falling debris hazards
- Gully hazards
- · Undermined cliff hazard
- Cliff erosion hazards

Subsequent on-site mapping by a T+T geologist on 28 August 2024 confirmed these preliminary hazard areas to be suitable for assessing appropriate building locations at the site for master planning purposes.

Before locating buildings, infrastructure, or access routes within these hazard areas, a more detailed assessment of life safety and property risk would be required. It is important to note that these hazard areas are not necessarily "no build zones." Various risk management strategies are likely available, including avoidance, site-specific foundation design, or engineered ground structures such as debris flow / rockfall protection barriers. In locations where potential damage to property is limited, a "do nothing" approach could be considered, with repairs made as necessary.

Following our v1 assessment and discussions with the project team an updated site layout was provided for review (13 January 2025). In this layout buildings and access routes generally avoid the hazard areas where feasible. However, three cabin locations overlap with gully hazard areas. These cabins will require specific foundation design to accommodate localised shallow failure of the gully slopes (e.g. deeper piles may be necessary). One of these cabins also appears to be positioned in close proximity to, or potentially overlapping the TTPP coastal setback boundary. The actual location relative to this setback should be confirmed.

Applicability

This report has been prepared for the exclusive use of our client ACG Properties Ltd., with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose, or by any person other than our client, without our prior written agreement. We understand and agree that our client may submit this report as part of an application for resource consent and that the consenting authority may use this report for the purpose of assessing that application.

T+T Reference: 1095111 Version: v2, 24-March-2025

Tonkin & Taylor Ltd Environmental and Engineering Consultants

Report prepared by:

Cole Brown Engineering Geologist

Tonkin+Taylor

Authorised for Tonkin & Taylor Ltd by: Mike Jacka

Mike Jacka Project Director

Sheet 2: Geotechnical constraints

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

Hazard areas

What do these hazard areas mean?

These hazard areas indicate that more detailed assessment would be needed to better understand and design for the hazard before locating buildings, infrastructure or access in these areas. It's important to emphasise that these are not "no build zones". The areas have been drawn with a moderate degree of conservatism, so more detailed assessment may indicate the extent of the hazard is less than currently shown.

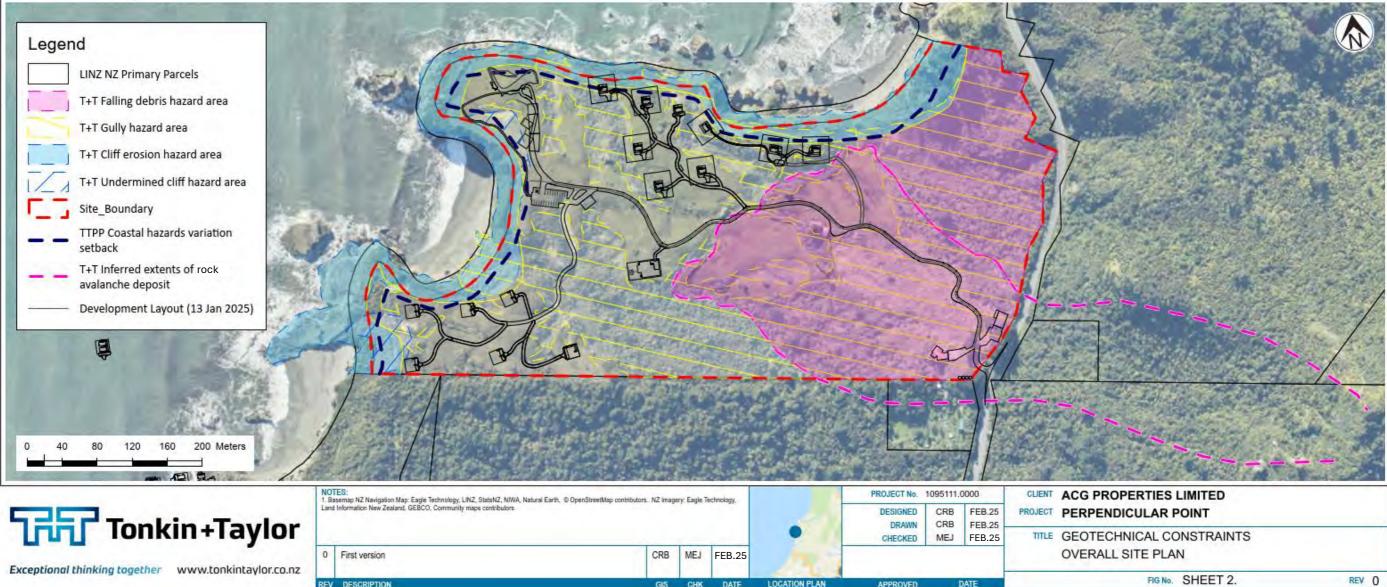
Falling debris hazard

The steep hillside and escarpment east of the site presents several significant falling debris hazards. There is evidence of historic instability of this slope affecting the site, including:

- Rockfall (extending approximately 100m west of SH6).
- Channelised flows.
- Rock avalanche.

Gully hazards

Several gullies are present across the site, comprising two major gulley systems. These gulley systems contain large upslope catchments connecting to areas of historic debris deposits. Following large rainfall events, these gullies may present a debris flow / flood hazard. These gully systems also show signs of localised slope instability.

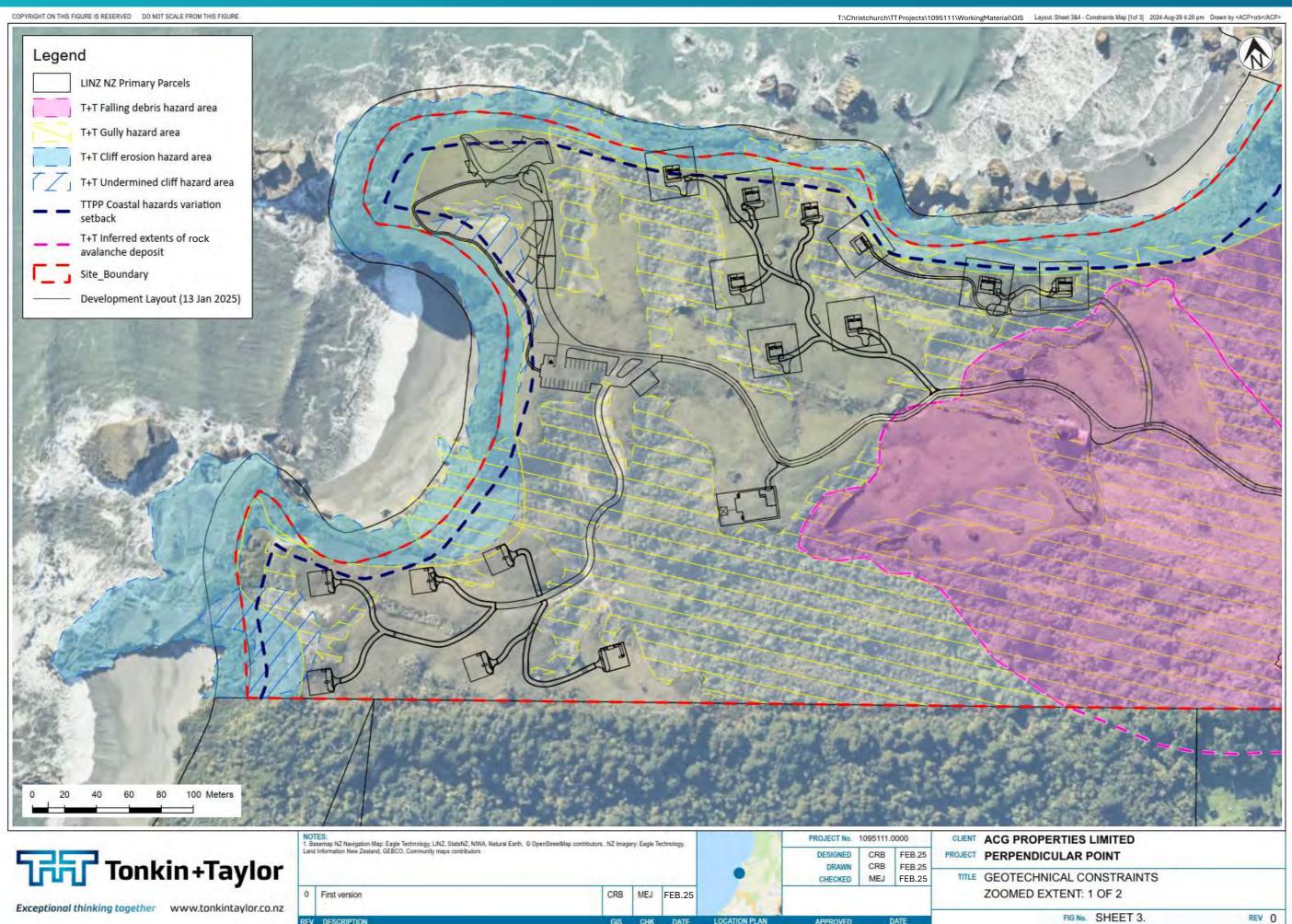

Undermined cliff hazard

Two arc-shaped caves have been identified along beaches at the west edge of the site. The ground overlying these caves systems is potentially susceptible to future subsidence or collapse.

Cliff erosion hazard

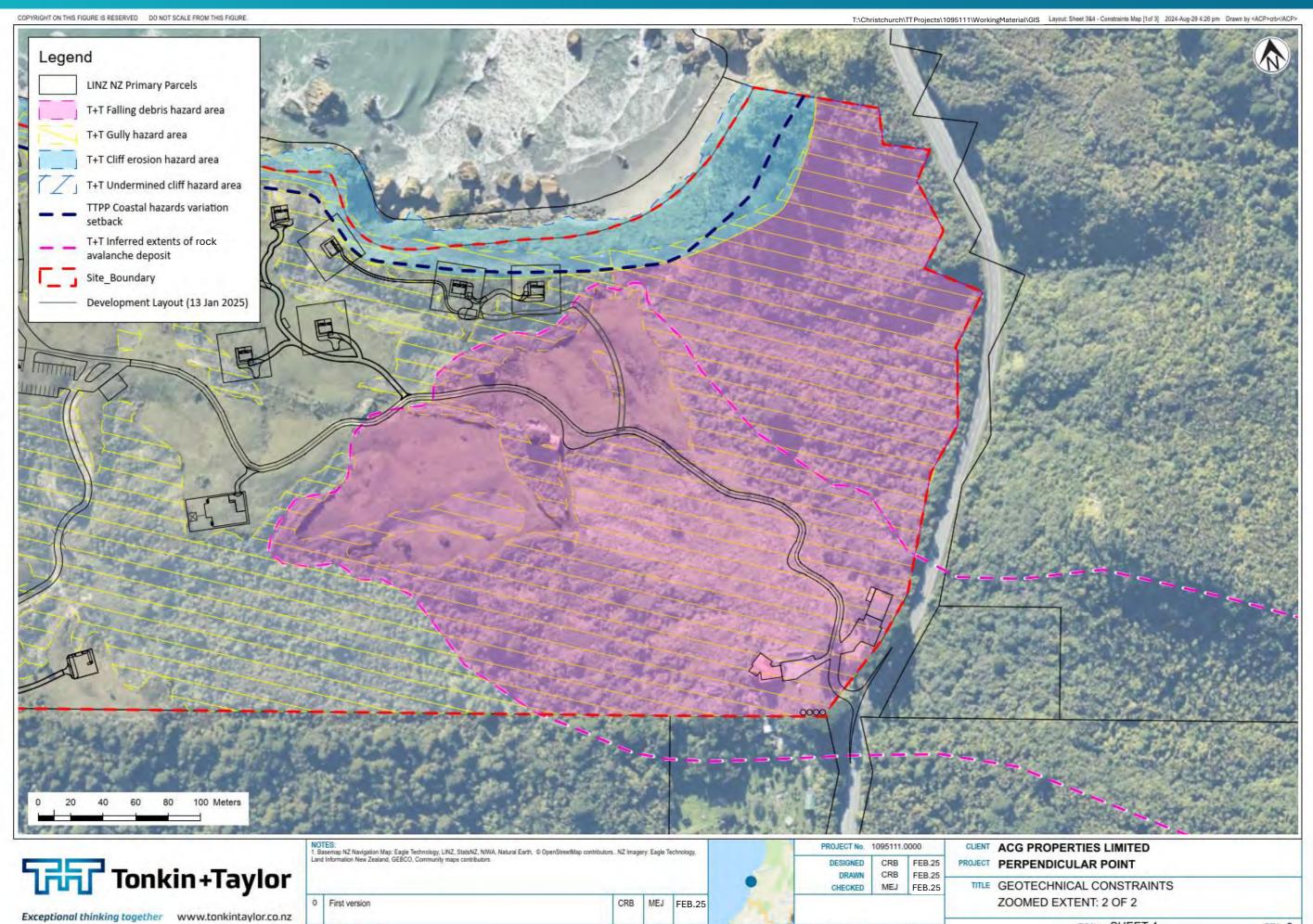
The erosion of the coastline appears to be primarily due to topple failures or block 'drop-outs' enabled by undermining of the cliffs along preferential bedding planes with the very widely spaced vertical joints providing side releases. Dozens of these large blocks are strewn across the beach and are consistently about 10 to 15m wide and 10 m in height. There is limited observations of block failures occurring between 1951 and present.

The coastal hazards in the Te Tai o Poutini Plan (TTPP) have recently been mapped and are in the process of being updated to become operative. Submissions close on 30 August 2024. Development coastward of this line will likely require detailed assessment and interaction with West Coast Regional Council.



Tonkin+Taylor

T:\Christchurch\TT Projects\1095111\WorkingMaterial\GIS Layout Sheet 2 - Overall Constraints Map 2024-Aug-29 4:26 pm Drawn by CRB


FIG No. SHEET 2.

Sheet 3: Geotechnical constraints map – zoomed view [1 of 2]

Tonkin+Taylor

Sheet 4: Geotechnical constraints map – zoomed view [2 of 2]

「元子」 Tonkin+Taylor

FIG No. SHEET 4.

Sheet 5: Geotechnical considerations [1 of 3]

Hazard area	Geotechnical consideration	Implications	Comments	Triggering events		ative risk – without measures using AG et 18 and 19)	S 2007 ⁽¹⁾	Concept-Level M development ad
					Likelihood	Consequence	Risk level	
Falling debris hazard	Rockfall (up to approx.100m west of road)	Rockfall impacting building likely to cause extensive damage to most of structure / completely destroy the structure.	Numerous boulders located along slope. Potential new boulders identified in 1976 aerial photograph, following the Inangahua Earthquake.	No trigger / Earthquake	Possible	Major to catastrophic	High to very high	 Refine the haz during the prop shapes, and d current 100m boulder mapp the property ea Quantitatively tolerance crite zone is accept Potential for sy structures, sue structures.
	Channelised flow	Mobilised flow of debris deposits and rocks impacting building causing moderate to extensive damage to most of structure.	No current observations, although debris material identified along upper slopes in 1976 aerial photograph, following the Inangahua Earthquake.	Heavy rainfall event/ Post- earthquake rainfall	Unlikely to possible	Medium to major	High	 Quantitatively tolerance crite zone is accept As above for ro passive protec structures, sur
	Rock avalanche	Significant portion of upslope escarpment mobilising rapidly downslope and burying large portion of the site in metres of rock and debris.	There are two inferred rock avalanche deposits present on the escarpment on and within 400m of the site. The rock avalanche deposits are overlying a raised sea platform, which could be used to infer the age.	Earthquake	Unlikely	Catastrophic	High	 Refine lower zo Quantitatively tolerance crite zone is accept Potential for sy zone of hazard
Cliff erosion Hazard	Block 'drop- out' / Topple	Single or a few blocks falling from slope likely resulting in a 10 – 20m wide area that regresses by about 10 – 15m in a single event. Any structures and infrastructure located within this zone could be undermined. Adjacent land could be impacted by progressive instability of the soil mantle over time.	Significant observations of this failure mechanism and block size along the coastline. Limited observations of blocks dropping out between 1951 and present. Sea level rise will likely increase the rate this process occurs.	No trigger / Storm event	Possible	Medium to major	Moderate to high	 Cabin structur through specif system to miti, be relocated if occurs in front Any proposed likely require d Regional Cour
	Cliff collapse	Significant length of the coastline collapses resulting in a 10 to 20m wide regression in a single event.	No evidence of this failure mechanism and generally not expected given the massive structure and defect orientations.	Earthquake	Rare	Major	Low	
Undermined cliff hazard	Collapse of cave	Collapse of cave structure, resulting in subsidence and significant tilting of the ground profile and building structure.	Collapsed cave features present across the wider coastline. Also poses risk to any people inside cave.	Earthquake / Storm event	Possible	Medium to major	Moderate to High	Map extents of development of

Tonkin+Taylor

l Management Measures and general geotechnical advice

azard area by conducting a boulder mapping assessment roposed site visit to identify the locations, diameters, I distribution of boulders, and use the results to refine the m runout distance estimate through a rockfall analysis. A pping assessment would require permission to access y east of the road.

ely estimate and evaluate life safety risk of hazard versus riteria to identify if risk level of building within the hazard eptable.

r specific engineering design of passive protection such as a soil rockfall bund to mitigate rockfall impacting

ely estimate and evaluate life safety risk of hazard versus riteria to identify if risk level of building within the hazard eptable.

r rockfall, potential for specific engineering design of tection structures to mitigate debris flows from impacting such as debris barrier or a diversion structure.

r zone of hazard by mapping during site visit. ely estimate and evaluate life safety risk of hazard versus riteria to identify if risk level of building within the hazard eptable.

r specific engineering design to build cabins on lower ard, such as using elevated pile foundation.

tures could be located within some areas of this zone orific engineering design, such as a piled foundation nitigate the effects of cliff erosion. The structure can then d if a significant block 'drop-out' or topple of the cliff ont of the structure.

ed development within the TTPP coastal setback area will e detailed assessment and interaction with West Coast puncil.

s of each cave to refine hazard area and potentially allow nt closer to underlying caves.

Sheet 6: Geotechnical considerations [2 of 3]

Hazard area	Geotechnical consideration	Implications	Comments	Triggering events	Interim qualita measures usin (Refer to Sheet	-	anagement	Concept-Level development ac	
					Likelihood	Consequence	Risk level		
Gully hazards	Slope instability	Landslide movement resulting in undermining of building foundations and tilting of the structure.	Several circular landslide features identified along gully systems.	Rainfall	Possible	Medium	Moderate	 Specific engialong the slo system to mi Direct draina at base of slo 	
	Debris flow	Upslope landslide movement resulting in mobilisation of debris impacting structures or infrastructure such as roads or access routes within gullies downslope.	Significant debris was present In upper gully system in the 1976 aerial photography following the Inangahua Earthquake.	Heavy rainfall event / Post- earthquake rainfall	Likely	Major to catastrophic	Very high	 Avoid buildin Clear and if r following deb Specific engibe undertake infrastructure may require p potentially re 	
	Flooding	Flooding of gullies resulting in inundation of structures or infrastructure such as roads or access routes.	Appears to be constant water discharge along main gully systems. Credible that flooding occurs during heavy rainfall.	Heavy rainfall event	Likely	Major	Very high	 Avoid buildin Potential for events. Clear and if r following deb 	
General	Health & Safety	Visitors to the site are exposed to various safety hazards. Various parties have a duty of care as PCBUs under health & safety legislation.	This includes during design, construction and operation phases of the development.Some present at all times (e.g. fall from cliffs or into voids), some triggered by storm or earthquake event (e.g. cave collapse).Likely (2)Major (2)Major (2)				High ⁽²⁾	 Job Safety & l all parties wh process in co date through Consider saf structures ar potential fall Appropriate s site so they a 	
	Tomo	Subsidence / collapse of ground due to erosion along joints / geological structures.	Limited observations of tomos on rock outcrops at the coastline.	Heavy rainfall event	Rare	Minor to moderate	Very low to low	 Onsite walko visit. This ma moved signifi 	

Tonkin+Taylor

el Management Measures and general geotechnical t advice

ngineering design of foundations to locate structures slope crests of this zone, such as using a piled foundation mitigate the slope instability.

nage from dwellings away from any slopes, e.g. discharge slope.

ding structures within gullies.

if required repair roads / access tracks and infrastructure debris flow event.

ngineering design of passive protection structures could aken to mitigate effects of debris flows on tracks and cure, such as debris barrier or a diversion structure. These re post-event maintenance, e.g. clearing of debris, repairing structure.

ding structures within gullies / within catchment areas. or temporary access issues during adverse rainfall

if required repair roads / access tracks and infrastructure debris flow event.

& Environmental Analysis(JSEA) document distributed to who work on site during design, as well as site induction construction. This JSEA document should be kept up-toighout the design and construction process.

safety hazards during design of the layout of the

and infrastructure, such as setback cabins from

all hazards or installation of physical barriers.

te safety briefing and clear information for visitors to the y are aware of the hazards.

lkover of each proposed building locations during our site may need to be undertaken again if the locations are nificantly.

Sheet 7: Geotechnical considerations [3 of 3]

Hazard area	Geotechnical consideration	Implications	Comments	Triggering events	Interim qualitation measures using (Refer to Sheet 1		anagement	Concept-Level development a
					Likelihood	Consequence	Risk level	
General	Earthquakes and faulting	Site is susceptible to large ground motions from known faults that are distant from the site.	No evidence of active faults within or near the site has been observed.	-	-	-	-	 Design level structures is standards to
	Bearing capacity for building foundations	Potential for unacceptable deformation of key buildings or infrastructure due to sharp changes in ground conditions and strength and compressibility.	This is particularly notable when building structures or infrastructure, such as roads, on landslide materials such as the rock avalanche deposit.	-	Possible to likely	Medium	Moderate to high	 Site investige buildings. In specific engine foundation s
	Stormwater / wastewater disposal	Potential for erosion / scour issues along structures and access routes due to inadequate disposal stormwater / wastewater management, thereby requiring continued maintenance and repairs.	Many of the structures are located near to the crests of slopes, with many crossings across the gullies. Concentrated surface water flows could be problematic if not appropriately managed.	-	Possible to likely	Minor	Moderate	• We recomm engineer for surface / sta
	Pavement subgrade	Potentially inadequate pavement subgrade resulting in premature pavement failure and uneven roads, resulting in increased maintenance costs.	This is more likely to be an issue where roads / access routes cross gullies that are filled with loose alluvial material. It may also be problematic along the rock avalanche deposit.	-	Possible	Minor	Low	 Site investigative key infrastru conditions a

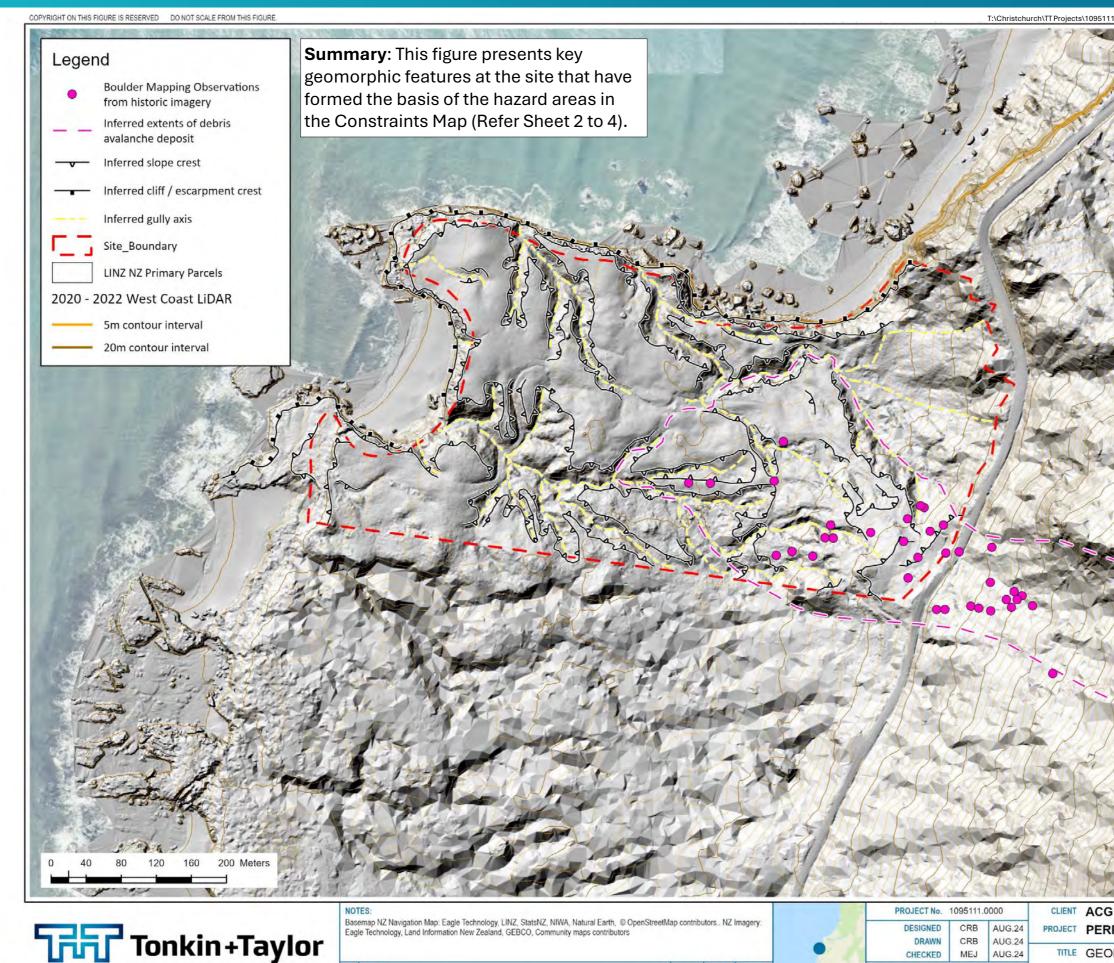
Notes:

(1) The interim qualitative risk analysis has been completed for selected geotechnical hazards and considerations only and assumes no management measures are in place. This is a high-level risk analysis intended primarily to assist identification of potential priority geotechnical risks to the development.

(2) The qualitative risk assessment health and safety geotechnical consideration uses the health and safety risk matrix from ISO 45001. High = Risk undesirable: Risks must be reduced so far as practicable. Requires management oversight.

Tonkin+Taylor

vel Management Measures and general geotechnical t advice


vel ground shaking at the site and on engineered s is typically managed by existing national guidance and s to meet requirements of the Building Act and Code.

tigations, such as trial pits, at the preferred areas for key In areas where the ground conditions are problematic, ngineering design such as a piled or lightweight on system could be used.

nmend that you engage a suitably qualified stormwater for input into the design, in particular the management of standing water.

tigations, such as trial pits, at the preferred location for tructure such as parking areas to assess ground s and support any pavement design requirements.

Sheet 8: Geomorphic mapping

Exceptional thinking together www.tonkintaylor.co.nz

0 First version

REV DESC

CRB MEJ AUG.24

AUG.24

MEJ

CHECKED

Tonkin+Taylor

ACG PROPERTIES LIMITED PROJECT PERPENDICULAR POINT TITLE GEOMORPHIC MAPPING **OVERALL SITE PLAN** FIG No. SHEET 8. REV O

Sheet 9: Falling debris hazard [1 of 4]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

Summary: An approximately 250m wide and 300m long inferred rock avalanche deposit has been identified at the east extent of the site. This deposit has likely catastrophically failed from the escarpment at the crest of the slope east of the site and rapidly travelled and deposited across the site. Key indications of this type of deposit include:

- Conical / fan-like shape of the deposit.
- Large limestone boulders located across the slope.
- Average slope profile of approximately 12 degrees, compared to general 2 degrees trend of the site.
- Hummocky and dissected ground surface.

				-				100	100		
	NO	TES:					PROJECT No.	1095111.	0000	CLIENT A	0
		Basemap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, LINZ, StatsNZ, NIWA, Natural Earth, © OpenStreetMap contributors.							AUG.24	PROJECT P	E
Tonkin+Taylor						1 6	CHECKED	CRB	AUG.24	TITLE F	Δ
Exceptional thinking together www.tonkintaylor.co.nz	0	First version	CRB	YYYY	D/M/Y	100				IN	1
exceptional timking together www.tonkintayioi.co.nz	PE	DESCRIPTION	CIS	CHK	DATE		APPROVED		DATE	6	Ī

Tonkin+Taylor

Approximate extents of inferred rock avalanche deposit

ACG PROPERTIES LIMITED
PERPENDICULAR POINT

FALLING DEBRIS HAZARD INFERRED ROCK AVALANCHE DEPOSIT [1 OF 2]

FIG No. SHEET 9.

Sheet 10: Falling debris hazard [2 of 4]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

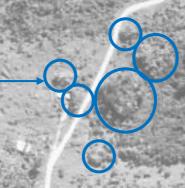
_		_	_	
FO	nin	TION		
JES L	CRIP	IIUN		

Tonkin+Taylor

INFERRED ROCK AVALANCHE DEPOSIT [2 OF 2]

FIG No. SHEET 10.

Sheet 11: Falling debris hazard [3 of 4]


Summary: There is evidence of a large historic rockfall event along the escarpment – upslope of State Highway 6 – approximately 400m south of the site. Large boulders are present near State Highway 6, although boulders may have travelled further.

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

20 – 60m diameter boulders located on upslope and downslope edges of State Highway 6

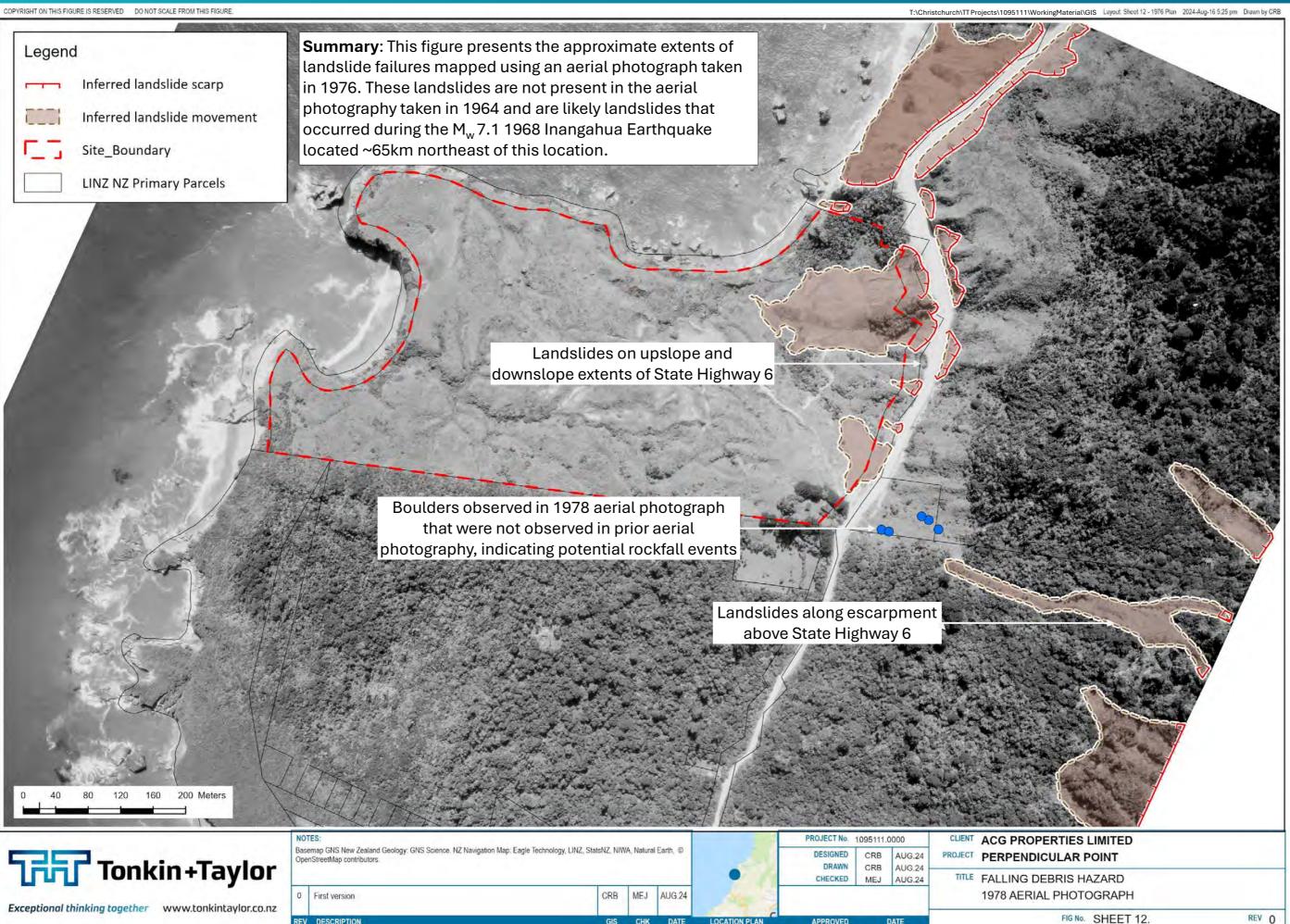
YYYY D/M/Y

CRB

NOTES: Basemap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, LINZ, StatsNZ, NIWA, Natural Earth, © OpenStreetMap contributors.

0 First version

ON PLAN	APPROVED		DATE	
	DRAWN	CRB CRB	AUG.24 AUG.24 -	TITLE
	PROJECT No.		1	CLIENT


Exceptional thinking together www.tonkintaylor.co.nz

行行Tonkin+Taylor

FIG No. SHEET 11.

Sheet 12: Falling debris hazard [4 of 4]

		TROJECT NO.	1095111.0000				
ew Zealand Geology: GNS Science. NZ Navigation Map: Eagle ontributors.	Technology, LINZ, StatsNZ, NIW/	A, Natural	Earth, ©		DESIGNED DRAWN	CRB CRB	AUG.24 AUG.24
					CHECKED	MEJ	AUG.24
on	CRB	MEJ	AUG.24	100			

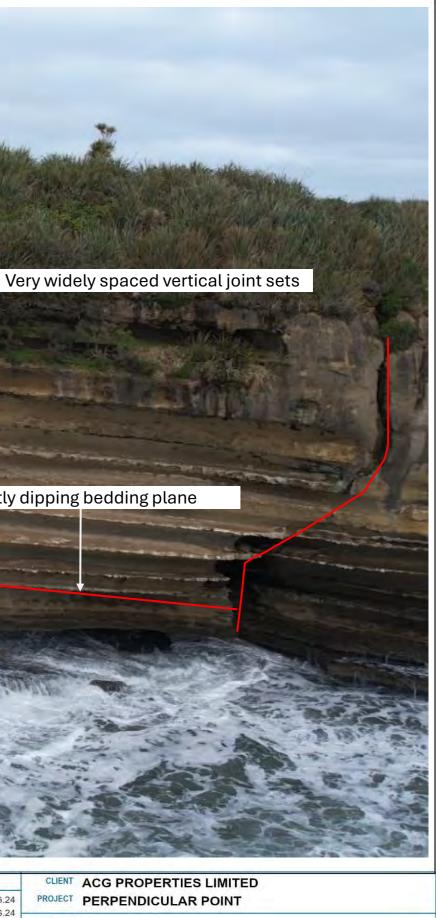
-		_		-
D	ESC	RIP	TION	

Tonkin+Taylor

Sheet 13: Coastal erosion hazard [1 of 2]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

Summary: The erosion of the coastline in this area appears to be primarily due to topple failures or block 'drop-outs' enabled by undermining of the cliffs along preferential bedding planes with the very widely spaced vertical joints providing side releases. Dozens of these large blocks are strewn across the beach and are consistently about 10 to 15m wide and 10 m in height.



Exceptional thinking together www.tonkintaylor.co.nz

1000	TES:			Sec.		PROJECT No.	1095111.	0000	CLIENT	AC
	emap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, LINZ, enStreetMap contributors.	StatsNZ, NIV	/A, Natural	Earth, ©		DESIGNED	CRB CRB	AUG.24 AUG.24	PROJECT	PE
				_	1 1	CHECKED	CIND	A00.24	TITLE	CC
0	First version	CRB	YYYY	D/M/Y	14.0					JU
REV	DESCRIPTION	GIS	СНК	DATE	LOCATION PLAN	APPROVED		DATE		

Tonkin+Taylor

COASTAL EROSION HAZARD JULY 2024 DRONE FLYOVER [1 OF 2]

FIG No. SHEET 13.

Sheet 14: Coastal erosion hazard [2 of 2]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

REV	DESCRIPTION	GIS	CHK	DATE	LOCATION PLAN	APPROVED		DATE	
0	First version	CRB	YYYY	D/M/Y	14.0				
					15.6	CHECKED	GILD	A00.24	TITLE
	emap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, Ll nStreetMap contributors.	NZ, StatsNZ, NIW	/A, Natural	Earth, ©		DESIGNED	CRB CRB	AUG.24 AUG.24	PROJECT
NO				Sec. 1.		FROJECT NO.	1095111.	0000	CLIENT

FIG No. SHEET 14.

Sheet 15: Gully hazards [1 of 2]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

Summary: Several gullies are present across the site and are generally made up of two major gulley systems. These gulley systems contain large upslope catchments that connect to areas where landslides have occurred in the past. These systems may present a debris flow / inundation hazard during large rainfall events.

These gully systems also show signs of localised slope instability.

		NOTES: Basemap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, LINZ, StatsNZ, NIWA, Natural Earth, © OpenStreetMap contributors.							1095111. CRB CRB	AUG.24	PROJECT
Tonkin+Taylor							1 6	CHECKED	OND	100.24	TITLE
Exceptional thinking together www.tonkintaylor.co.nz	0	First version	CRB		YYYY	D/M/Y	1000				
	RE	DESCRIPTION	GIS		СНК	DATE	LOCATION PLAN	APPROVED		DATE	

Tonkin+Taylor

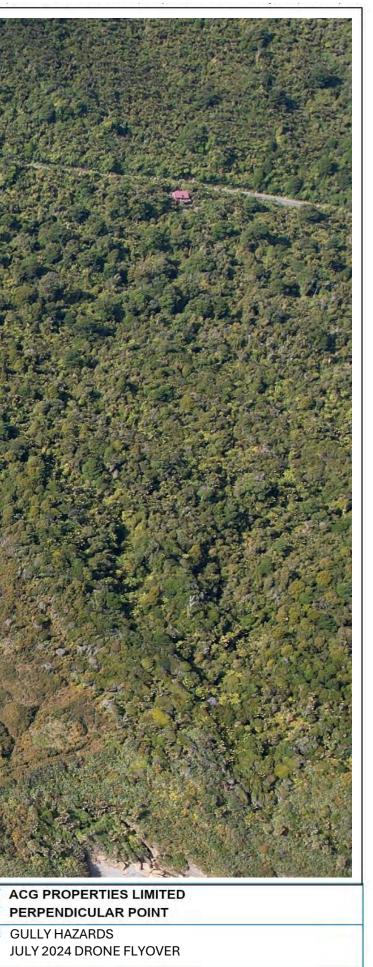


FIG No. SHEET 15.

Sheet 16: Gully hazards [2 of 2]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

Basemap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, LINZ, StatsNZ, NIWA, Natural Ea	arth,
OpenStreetMap contributors.	

CLIENT	0000	1095111.0	PROJECT No.	
PROJECT	AUG.24	CRB	DESIGNED	
	AUG.24	CRB	DRAWN	
TITLE			CHECKED	
			OTLOTED	

REV	DESCRIPTION	

0 First version

YYYY D/M/Y

CRB

Tonkin+Taylor

GULLY HAZARDS MAY 2024 DRONE FLYOVER

FIG No. SHEET 16.

Sheet 17: Undermined cliff hazard [1 of 2]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE

Summary: Two arc-shaped caves have been identified along beaches at the west extent of the site. The ground overlying these caves systems is potentially susceptible to future subsidence or collapse.

> Depression in ground due to potential subsidence of cave feature or potential eroded joint in rock.

Cave feature along west-facing beach. The cave appears longer than the cliff height, although actual length is unknown.

NOT	TES:					PROJECT No.	1095111.	0000	CLIENT	A
	emap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, nStreetMap contributors.	LINZ, StatsNZ, NIW	/A, Natural	Earth, ©		DESIGNED	CRB CRB	AUG.24 AUG.24	PROJECT	Ρ
					100	CHECKED	CKB	AUG.24	TITLE	U
0	First version	CRB	YYYY	D/M/Y	100					JL
DEV	DESCRIPTION	CIP	CUIV	DATE		ADDOVED	_	DATE	2	

Tonkin+Taylor

CG PROPERTIES LIMITED PERPENDICULAR POINT JNDERMINED CLIFF HAZARD ULY 2024 DRONE FLYOVER [1 OF 2]

FIG No. SHEET 17.

Sheet 18: Undermined cliff hazard [2 of 2]

COPYRIGHT ON THIS FIGURE IS RESERVED DO NOT SCALE FROM THIS FIGURE.

Cave feature along uplifted / ancient southwest-facing beach. The cave appears significantly longer than the cliff height, although actual length is unknown.

Basemap GNS New Zealand Geology: GNS Science. NZ Navigation Map: Eagle Technology, LINZ, Sta OpenStreetMap contributors.	atsNZ, NIWA, Natural Earth,

CRB

CLIENT	0000	1095111.0	PROJECT No.		100	
PROJECT	AUG.24 AUG.24	CRB CRB	DESIGNED	, Natural Earth, ©		
TITLE	AUG.24	CKB	CHECKED			
					D/M/Y	YYYY
					1	_

Exceptional thinking together www.tonkintaylor.co.nz

0 First version

Tonkin+Taylor

UNDERMINED CLIFF HAZARD JULY 2024 DRONE FLYOVER [2 OF 2]

FIG No. SHEET 18.

LIKELIH	OOD	CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)						
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%		
A – ALMOST CERTAIN	10 ⁻¹ (10%)	VH	VH	VH	Н	M or L (5)		
B - LIKELY	10 ⁻² (1%)	VH	VH	Н	М	L		
C - POSSIBLE	10 ⁻³ (0.1%)	VH	Н	М	М	VL		
D - UNLIKELY	10 ⁻⁴ (0.01%)	Н	М	L	L	VL		
E - RARE	10 ⁻⁵ (0.001%)	М	L	L	VL	VL		
F - BARELY CREDIBLE	10 ⁻⁶ (0.0001%)	L	VL	VL	VL	VL		

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

RISK LEVEL IMPLICATIONS

	Risk Level	Example Implications (7)
VII	VERY HIGH RISK	Unacceptable without treatment. Extensive detailed investigation and research, plannin options essential to reduce risk to Low; may be too expensive and not practical. Work property.
Н	HIGH RISK	Unacceptable without treatment. Detailed investigation, planning and implementation risk to Low. Work would cost a substantial sum in relation to the value of the property
М	MODERATE RISK	May be tolerated in certain circumstances (subject to regulator's approval) but requires implementation of treatment options to reduce the risk to Low. Treatment options to reimplemented as soon as practicable.
L	LOW RISK	Usually acceptable to regulators. Where treatment has been required to reduce the risk required.
VL	VERY LOW RISK	Acceptable. Manage by normal slope maintenance procedures.

Note: (7) The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide.

Tonkin+Taylor

ning and implementation of treatment rk likely to cost more than value of the

on of treatment options required to reduce rty.

res investigation, planning and reduce to Low risk should be

sk to this level, ongoing maintenance is

Approximate Annual Probability		Annual Probability Implied Indicative Landslide			12.000	
Indicative Value	cative Notional Recurrence			Description	Descriptor	Level
10 ⁻¹	5x10 ⁻²	10 years	1.27.00	The event is expected to occur over the design life.	ALMOST CERTAIN	A
10 ⁻²	5x10 ⁻³	100 years	20 years	The event will probably occur under adverse conditions over the design life.	LIKELY	в
10-3		1000 years	 200 years 2000 years 	The event could occur under adverse conditions over the design life.	POSSIBLE	С
10-4	5x10 ⁻⁴	10,000 years	20,000 years	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10-5	5x10 ⁻⁵ 5x10 ⁻⁶	100,000 years		The event is conceivable but only under exceptional circumstances over the design life.	RARE	Е
10-6	JAIO	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	F

QUALITATIVE MEASURES OF LIKELIHOOD

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate Cost of Damage			and and a	A
Indicative Value	Notional Boundary	Description	Descriptor	Level
200%	1000/	Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	1
60%	100%	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage.	MAJOR	2
20%	40%	Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3
5%	10% 1%	Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4
0.5%	170	Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5

行行Tonkin+Taylor